As you heard, I'm a physicist. And I think the way we talk about physics needs a little modification. I am from just down the road here; I don't live here anymore. But coming from round here means that I have a northern nana, my mum's mom. And Nana is very bright; she hasn't had much formal education, but she's sharp. And when I was a second-year undergraduate studying physics at Cambridge, I remember spending an afternoon at Nana's house in Urmston studying quantum mechanics. And I had these folders open in front of me with this, you know, hieroglyphics -- let's be honest. And Nana came along, and she looked at this folder, and she said, "What's that?" I said, "It's quantum mechanics, Nana." And I tried to explain something about what was on the page. It was to do with the nucleus and Einstein A and B coefficients. And Nana looked very impressed. And then she said, "Oh. What can you do when you know that?"
(Laughter)
"Don't know, ma'am."
(Laughter)
I think I said something about computers, because it was all I could think of at the time.
But you can broaden that question out, because it's a very good question -- "What can you do when you know that?" when "that" is physics? And I've come to realize that when we talk about physics in society and our sort of image of it, we don't include the things that we can do when we know that. Our perception of what physics is needs a bit of a shift. Not only does it need a bit of a shift, but sharing this different perspective matters for our society, and I'm not just saying that because I'm a physicist and I'm biased and I think we're the most important people in the world. Honest.
So, the image of physics -- we've got an image problem, let's be honest -- it hasn't moved on much from this. This is a very famous photograph that's from the Solvay Conference in 1927. This is when the great minds of physics were grappling with the nature of determinism and what it means only to have a probability that a particle might be somewhere, and whether any of it was real. And it was all very difficult. And you'll notice they're all very stern-looking men in suits. Marie Curie -- I keep maybe saying, "Marie Antoinette," which would be a turn-up for the books -- Marie Curie, third from the left on the bottom there, she was allowed in, but had to dress like everybody else.
(Laughter)
So, this is what physics is like -- there's all these kinds of hieroglyphics, these are to do with waves and particles. That is an artist's impression of two black holes colliding, which makes it look worth watching, to be honest. I'm glad I didn't have to write the risk assessment for whatever was going on there. The point is: this is the image of physics, right? It's weird and difficult, done by slightly strange people dressed in a slightly strange way. It's inaccessible, it's somewhere else and fundamentally, why should I care?
And the problem with that is that I'm a physicist, and I study this. This -- this is my job, right? I study the interface between the atmosphere and the ocean. The atmosphere is massive, the ocean is massive, and the thin layer that joins them together is really important, because that's where things go from one huge reservoir to the other. You can see that the sea surface -- that was me who took this video -- the average height of those waves by the way, was 10 meters. So this is definitely physics happening here -- there's lots of things -- this is definitely physics. And yet it's not included in our cultural perception of physics, and that bothers me.
So what is included in our cultural perception of physics? Because I'm a physicist, there has to be a graph, right? That's allowed. We've got time along the bottom here, from very fast things there, to things that take a long time over here. Small things at the bottom, big things up there. So, our current cultural image of physics looks like this. There's quantum mechanics down in that corner, it's very small, it's very weird, it happens very quickly, and it's a long way down in the general ... on the scale of anything that matters for everyday life. And then there's cosmology, which is up there; very large, very far away, also very weird. And if you go to some places like black holes in the beginning of the universe, we know that these are frontiers in physics, right? There's lots of work being done to discover new physics in these places.
But the thing is, you will notice there's a very large gap in the middle. And in that gap, there are many things. There are planets and toasts and volcanoes and clouds and clarinets and bubbles and dolphins and all sorts of things that make up our everyday life. And these are also run by physics, you'd be surprised -- there is physics in the middle, it's just that nobody talks about it. And the thing about all of these is that they all run on a relatively small number of physical laws, things like Newton's laws of motion, thermodynamics, some rotational dynamics. The physics in the middle applies over a huge range, from very, very small things to very, very big things. You have to try very hard to get outside of this. And there is also a frontier in research physics here, it's just that nobody talks about it. This is the world of the complex. When these laws work together, they bring about the beautiful, messy, complex world we live in.
Fundamentally, this is the bit that really matters to me on an everyday basis. And this is the bit that we don't talk about. There's plenty of physics research going on here. But because it doesn't involve pointing at stars, people for some reason think it's not that. Now, the cool thing about this is that there are so many things in this middle bit, all following the same physical laws, that we can see those laws at work almost all the time around us.
I've got a little video here. So the game is, one of these eggs is raw and one of them has been boiled. I want you to tell me which one is which. Which one's raw?
(Audience responds)
The one on the left -- yes! And even though you might not have tried that, you all knew. The reason for that is, you set them spinning, and when you stop the cooked egg, the one that's completely solid, you stop the entire egg. When you stop the other one, you only stop the shell; the liquid inside is still rotating because nothing's made it stop. And then it pushes the shell round again, so the egg starts to rotate again. This is brilliant, right? It's a demonstration of something in physics that we call the law of conservation of angular momentum, which basically says that if you set something spinning about a fixed axis, that it will keep spinning unless you do something to stop it. And that's really fundamental in how the universe works. And it's not just eggs that it applies to, although it's really useful if you're the sort of person -- and apparently, these people do exist -- who will boil eggs and then put them back in the fridge. Who does that? Don't admit to it -- it's OK. We won't judge you. But it's also got much broader applicabilities.
This is the Hubble Space Telescope. The Hubble Ultra Deep Field, which is a very tiny part of the sky. Hubble has been floating in free space for 25 years, not touching anything. And yet it can point to a tiny region of sky. For 11 and a half days, it did it in sections, accurately enough to take amazing images like this. So the question is: How does something that is not touching anything know where it is? The answer is that right in the middle of it, it has something that, to my great disappointment, isn't a raw egg, but basically does the same job. It's got gyroscopes which are spinning, and because of the law of conservation of angular momentum, they keep spinning with the same axis, indefinitely. Hubble kind of rotates around them, and so it can orient itself. So the same little physical law we can play with in the kitchen and use, also explains what makes possible some of the most advanced technology of our time. So this is the fun bit of physics, that you learn these patterns and then you can apply them again and again